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The unsteady drag and lift generated by the interaction of a gravity current with
a bottom-mounted square cylinder are investigated by means of high-resolution
Navier–Stokes simulations. Two-dimensional simulations for Reynolds numbers (Re)
O(1000) and three-dimensional simulations for Re =O(10 000) demonstrate that the
drag coefficient increases exponentially towards a maximum as the current meets the
cylinder, then undergoes strong fluctuations and eventually approaches a quasi-steady
value. The simulation results show that the maximum drag coefficient can reach a
value of 3, with the quasi-steady value being O(1), which should aid in selecting
a design drag coefficient for submarine structures under the potential impact of
gravity currents. The transient drag and lift fluctuations after impact are associated
with the Kelvin–Helmholtz vortices in the mixing layer between the gravity current
and the ambient fluid. As these vortices pass over the cylinder, they cause the
convection of separated flow regions along the bottom wall towards the cylinder.
In two-dimensional simulations at Re =O(10 000), these flow structures are seen to
be unrealistically coherent and to persist throughout the interaction, thus resulting
in a noticeable overprediction of the drag and lift fluctuations. On the other hand,
the impact of the current on the cylinder is seen to be very well captured by
two-dimensional simulations at all Re values. Three-dimensional simulations lead to
excellent agreement with available experimental data throughout the flow/structure
interaction. They show that the spanwise variation of the drag is determined by the
gravity current’s lobe-and-cleft structure at impact and by an unsteady cellular flow
structure similar to that found in constant-density flows at later times. A comparison
between gravity-current flows and corresponding constant-density flows shows the
hydrostatic drag component to be important for gravity currents.

1. Introduction
Gravity currents form in many natural environments and engineering applications

when a heavier fluid propagates into a lighter one in a predominantly horizontal
direction (Simpson 1997). Such currents are called compositional when driven by
concentration variations of liquids, solutes or gases, or they are called particle-laden
when the density differences result from differential particle loading. Of particular
interest in the present context are particle-laden currents that form as a result of
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underwater landslides. The subsequent flow of sediment-laden fluid is referred to as
a turbidity current. While such currents occur infrequently and unpredictably and
often in remote environments, they can be extremely large and hence destructive
of submarine equipment. Their interaction with submarine engineering structures,
such as oil and gas pipelines, wellheads and submarine cables, poses a challenge
to design engineers who require estimates of the dynamic loads and the associated
time scales. Towards this end, high-resolution numerical simulations can be of great
value, as they can provide access to quantitative information that may be difficult
to obtain experimentally. Specifically, simulations have the capability to identify and
track time-dependent flow features, along with simultaneous force fluctuations on
the submerged structures. The knowledge gained from an investigation of turbidity
current-structure interaction will be applicable to other areas as well, such as devices
intended to protect from powder-snow avalanches (Hopfinger 1983).

A distinguishing ingredient in the interaction between turbidity currents and
submarine structures lies in the unsteady nature of the governing dynamical processes.
The largest forces and/or moments are expected to act on the structure when it is
first encountered by the current head. Hence, a quantitative analysis has to focus
on the processes during the impact of a front on the obstacle. In contrast, most of
the past work on flow-structure interaction has addressed the problem of constant-
density uniform flow past cylinders (cf. the review by Williamson 1996), along with
the related area of vortex-induced vibrations (Williamson & Govardhan 2004). While
a few investigations have addressed the issue of submerged objects impulsively started
from rest (e.g. Koumoutsakos & Leonard 1995), the flow fields generated under such
conditions are still fundamentally different from those to be considered here.

A second line of research on flow-structure interactions, relevant to the type of
flows to be considered here, has focused on solid objects moving through stratified
environments (e.g. Chomaz, Bonneton & Hopfinger 1993). Here, the emphasis has
been both on the generation of internal waves by moving objects and on the near-field
turbulence and far-field wake structure. Investigations have been conducted both for
towed obstacles and for self-propelled ones in which there is no net force acting
on the body. A detailed description of the relevant fluid dynamical mechanisms is
provided by Spedding, Browand & Fincham (1996). Of some relevance to the type
of flows considered here are also studies of weakly stratified flows past bottom-
mounted obstacles, in which the force component due to the generation of waves is
not important (e.g. Chernyshenko & Castro 1996; Castro 2002).

Very few investigations to date have explored the interaction between a gravity
current and an obstacle at a fundamental level. Among them are the investigations by
Greenspan & Young (1978), Rottman et al. (1985) and Lane-Serff, Beal & Hadfield
(1995), whose shallow-water analyses are motivated by the need to design protective
barriers against the accidental release of hazardous dense gases. This simplified
approach enables them to predict a relation between the obstacle height and the
fraction of the incoming gravity current that overruns the containment barrier.
However, a detailed description of the current structure during the initial impact on
the submerged cylinder cannot be obtained from shallow-water theory, so that it is
questionable as to whether time-dependent force loads can be predicted on this basis.
This is one of the issues to be addressed here.

Recent experimental investigations by Ermanyuk & Gavrilov (2005a, b) measure
time-varying drag and lift coefficients of gravity-current flows over circular and square
cylinders, separated by a gap from the bottom wall. Preliminary two-dimensional
simulations by the present authors show good agreement with these experimental
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data for circular cylinders, during the early stages of the interaction (Gonzalez-Juez,
Constantinescu & Meiburg 2007). The experimental work identifies three distinct
stages during the current-structure interaction, viz. an impact stage, a transient
oscillatory stage and a quasi-steady stage. As the current approaches the cylinder,
the drag is seen to increase monotonically with time in an exponential fashion,
until it saturates and reaches a first maximum. The time at which it occurs is
taken as the end of the impact and the beginning of the transient stage. A few
successively smaller fluctuations define the subsequent transient stage, before the drag
eventually settles down to a slowly decaying value during the quasi-steady stage.
The drag force during the initial impact stage is found to be notably higher than
during the later quasi-steady stage. The effects of the Reynolds and Schmidt numbers
on the force coefficients are found to be almost negligible for the ranges investigated.
The experimental methods do not provide a detailed description of the flow field,
so that the forces cannot be correlated to specific flow structures. Establishing the
link between the time-dependent flow field and the instantaneous force coefficients
represents a main goal of the present investigation. The present investigation will
primarily focus on configurations without a gap between the cylinder and the wall.
However, results from one three-dimensional simulation with a gap will be presented
and compared to experimental measurements.

It is known from both experiments (Bonnecaze & Lister 1999; Bonnecaze,
Huppert & Lister 2006) and simulations (Härtel, Meiburg & Necker 2000; Necker
et al. 2002, 2005; Ooi, Constantinescu & Weber 2005) that during the constant-
velocity phase compositional and particle-driven currents share many features. In
order to eliminate the complication of sedimentation and erosion, we will hence focus
on a compositional gravity current in order to gain some insight into the processes
governing the flow-structure interaction. Specifically, we will employ the generic case
of a constant-velocity Boussinesq current in the lock-exchange configuration, which
will be defined below (Huppert & Simpson 1980; Rottman & Simpson 1983).

Our primary objective is to identify, through a parametric study, the relation between
flow structures and forces acting on the cylinder, along with the key dimensionless
parameters and the proper scales, during all three of the above stages. In addition,
we aim to identify the conditions under which two-dimensional simulations are
adequate and when three-dimensional effects become important. Towards this end,
we consider moderate-Reynolds-number currents typical of laboratory experiments
(Re ∼ 103–104), rather than the very high-Reynolds-number currents that one might
encounter in nature (Re ∼ 107–109). In this way, we will be able to compare our
computational results with existing experimental measurements. Results from both
two- and three-dimensional simulations will show that important physical mechanisms
depend only weakly on the Reynolds number.

The manuscript is organized as follows: Section 2 defines the geometrical set-up
of the problem, along with the set of governing equations. Subsequently, § 3 presents
results from two-dimensional simulations. The force coefficients and associated flow
structures will be described as functions of the size of the cylinder in relation to
the current height, as well as of the channel depth. Furthermore, the influence of
the Reynolds number, the bottom wall boundary condition and the Schmidt number
will be discussed. Section 4 discusses results from three-dimensional simulations.
These results will be analysed to determine the range of validity of two-dimensional
simulations, to discuss the effect of the Reynolds number and to identify the type
of flow structure that produces spanwise drag variations. The forces during the
impact stage will be analysed in § 5.1, and a comparison with constant-density flows
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Figure 1. Schematic of the flow configuration. A channel of length L and height H contains
a lock of length l and height h. When the gate at x = 0 is opened, a current of the denser fluid
forms and propagates towards a square cylinder of side length D, which is situated a distance
lc away from the gate.

will be discussed in § 6. Finally, § 7 will briefly summarize the main findings and
conclusions.

2. Problem description and computational approach
In order to address the objectives above, we conduct two- and three-dimensional

numerical simulations of lock-exchange gravity currents interacting with bottom-
mounted square cylinders. A square rather than a circular cylinder is chosen due
to its relative simplicity from both physical and computational points of view. It is
known from the study of constant-density flows past obstacles that the separation
points on circular cylinders vary their location with time (Roshko 1993), whereas they
remain fixed for square cylinders. Because of this fixed separation-point location, the
flow around a square cylinder is expected to reach a regime of Reynolds number
independence at lower values of the Reynolds number, as argued in Ermanyuk &
Gavrilov (2005a), for example. The currents we consider are compositional in nature,
with the density difference caused by differential concentration fields. Figure 1 shows
a sketch of the channel of length L and height H , filled with ambient fluid of density
ρ0 and concentration c0. Submerged in it is a lock of length l and height h, which
contains the denser fluid of density ρ1 and concentration c1. When the vertical gate
at x = 0 is opened, a current of the denser fluid forms and propagates towards the
right along the floor of the channel. After travelling a distance lc, it encounters a
bottom-mounted cylinder of square cross-section, with side length D.

2.1. Governing equations

The simulations are based on the Navier–Stokes equations in the Boussinesq
approximation, and they follow the approach outlined by Härtel et al. (2000) and
Ooi et al. (2005). In the usual way, we introduce the buoyancy velocity

ub =
√

g′h, (2.1)

where the reduced gravity g′ is defined as

g′ = g(ρ1 − ρ0)/ρ0. (2.2)

The relationship between density and concentration is assumed to be linear:

ρ = ρ0 +
ρ1 − ρ0

c1 − c0

(c − c0). (2.3)
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By introducing suitable characteristic quantities, we can define dimensionless variables
as
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b
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. (2.4)

As a basis for large-eddy simulations (LESs) with subgrid-scale contributions to the
diffusion of momentum and concentration, we thus obtain the governing dimensionless
equations for the conservation of mass, momentum and concentration in the form
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= 0, (2.5)
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Here u∗
i denotes the velocity vector, p∗ the total pressure and c∗ the concentration, and

e
g
i indicates the unit vector pointing in the direction of gravity. The spatial coordinates

are denoted either by (x, y, z) or by (x1, x2, x3). As governing dimensionless parameters
in (2.5)–(2.7) we identify the Reynolds and Schmidt numbers, respectively,

Re =
ubh

ν
, Sc =

ν

κ
, (2.8)

where ν represents the kinematic viscosity and κ the molecular diffusivity. Note that
the product of these two parameters yields the Péclet number, Pe= ReSc. In addition,
there are various geometrical parameters, the most important ones being H/h and
D/h.

We remark that in the following discussion, it will generally be advantageous to
render time dimensionless by means of the front velocity V , since this will frequently
lead to a better collapse of data from different flow fields. Nevertheless, in deriving
the above equations we employ ub for non-dimensionalizing time, since this quantity
is known a priori, whereas V can be determined only in the course of carrying out the
numerical experiment. For the same reason, the lock height h is taken as the length
scale rather than the gravity-current height. We note that the height of lock-exchange
currents usually is close to h/2 (Shin, Dalziel & Linden 2004).

In § 3, we analyse results from several two-dimensional direct numerical simulations
(DNSs). In these simulations all of the two-dimensional scales of motion are resolved
by choosing a sufficiently fine grid and by setting the subgrid viscosity ν∗

SGS and
diffusivity κ∗

SGS in (2.6) and (2.7) to zero. On the other hand, the three-dimensional
simulations of § 4 employ an LES approach, so that a higher-Reynolds-number regime
can be reached. With the LES approach, only the large energy-containing scales are
resolved, while the effect of the small unresolved scales on the large scales is modelled
by evaluating ν∗

SGS and κ∗
SGS in (2.6) and (2.7) with the dynamic Smagorinsky model

(Germano et al. 1991; Lilly 1992). Additional details are provided in Pierce (2001)
and Ooi, Constantinescu & Weber (2007). Comparisons of the two-dimensional DNS
and three-dimensional LES results will allow us to assess the range of validity of
two-dimensional simulations in § 4.

Unless otherwise stated, the bottom (y = 0) and left (x = −l) boundaries of the
computational domain, and the surface of the cylinder, are treated as no-slip walls.
The top boundary (y = H ) is considered to be a slip wall. A convective boundary
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Parameter Reference Other values
case

L/h 24
l/h 9
lc/h 3
H/h 5 1, 1.25, 1.66, 2.5

Re (ReD) 2000 (177) 4000, 10 000,
50 000

Sc 1 10
D/h 0.15 0.05, 0.1, 0.25,

0.4, 0.5, 0.6, 0.7, 0.8
Grid 2048 × 320 2048 × 256, 3000 × 400

dt/(h/ub) 0.002

Table 1. Parameter values employed in the two-dimensional numerical simulations.

condition is employed along the right boundary (x = L − l) of the domain (Pierce
2001). In the three-dimensional simulations of § 4, the flow in the spanwise z-direction
is assumed to be periodic. The flow field is initialized with the fluid at rest everywhere
and the dimensionless concentration c∗ being 1 within the lock and 0 outside it.

2.2. Numerical methodology

Equations (2.6)–(2.7) are discretized on a non-equidistant Cartesian mesh and solved
with a finite-volume DNS/LES code (Pierce 2001; Pierce & Moin 2004) that has
been extensively validated (Ooi et al. 2005, 2007). Preliminary two-dimensional
results obtained with this code closely reproduce the experiments by Ermanyuk &
Gavrilov (2005b) (cf. Gonzalez-Juez et al. 2007). Specifically, the maximum drag and
maximum lift amplitude, which are defined later, are captured to within 10 % and
4 %, respectively. The simulation of irregular rectangular domains is accomplished
by means of a grid blanking methodology. The velocity components are represented
in a staggered fashion with respect to pressure and concentration, in both space and
time. All differential operators are discretized using central differences, except for the
convection term in the concentration conservation equation (2.7), which is discretized
using the QUICK scheme. Time integration is accomplished via an iterative procedure
similar to the Crank–Nicolson scheme. To ensure that the continuity equation (2.5)
is satisfied, a Poisson equation for the pressure correction is solved at each time step
by means of a multi-grid algorithm. The numerical method is second-order accurate
in both space and time.

3. Results from two-dimensional simulations
Table 1 indicates the parameter ranges of the simulations. Unless stated otherwise,

our discussion will refer to the reference case. The computational domain length is
kept at L/h= 24 for all simulations. The constant lock length of l/h= 9 ensures that
reflections from the left wall do not influence the interaction between the gravity-
current front and the cylinder, during the time of the simulation. The distance
between the gate and the cylinder is chosen as lc/h= 3, so that the current is in the
constant-front-speed phase when it encounters the cylinder. Both full-depth (H/h = 1)
and partial-depth (H/h > 1) currents will be analysed. As will be seen, the case of
H/h =5 closely approximates the deep-ambient case of H/h → ∞, in agreement with
observations for gravity currents in the absence of submerged obstacles (Simpson
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Figure 2. Interaction of a partial-depth (H/h = 5) gravity current with a cylinder of
D/h = 0.15. The current is visualized by means of the c∗ =0.1, 0.3, 0.5, 0.7 and 0.9 concentration
contours. As the current head is deflected upward by the cylinder, overshoots it and eventually
reattaches again, recirculation regions form both upstream and downstream of the cylinder.

1997). Reynolds numbers up to 50 000 will be considered, which are typical of
laboratory gravity currents. A relatively low value of Re = 2000 is selected as the
reference case, since for Re values O(10 000) or larger two-dimensional simulations
show a flow behaviour that is not consistent with experimental observations, as will
be discussed in § 4. The Reynolds number ReD = V D/ν based on the square side
D and the gravity-current front velocity V has a value of 177 for the reference
case; D/h is varied from 0.05 to 0.8. For comparison, typical gravity-current heights
O(1–100 m) and cylinder length scales O(1 m) yield a range of D/h = 0.005–0.5. A
grid of 2048 × 256 is employed for H/h = 1 and 1.25, while for other values of H/h

the grid is 2048 × 320. For Re � 4000, the grid is further refined to 3000 × 400. This
ensures a grid spacing of about 0.01D in the vicinity of the cylinder. The time step
size is limited such as to keep the Courant–Friedrich–Lewy (CFL) number below a
suitable value determined in test simulations. The parameter combinations of further
simulations will be discussed later.

3.1. Reference case: description of the flow field

Figure 2 displays the interaction of the reference current with the bottom-mounted
square cylinder. Initially, the current is seen to approach the cylinder from the left.
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H/h Re Bottom boundary V/ub

5 2000 No slip 0.59
5 10 000 No slip 0.62
5 50 000 No slip 0.64
5 2000 Slip 0.68
1 2000 No slip 0.40

Table 2. Values of V/ub during the constant-speed phase for different parameter
combinations.
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10

t/(h/ub)

x f
 /h

Figure 3. Gravity-current front position (xf /h) versus time in partial-depth H/h = 5 currents
for different values of D/h: 0.15 (dash-dotted line), 0.40 (thick solid line), 0.80 (dashed line)
and without the cylinder (thin solid line).

We recognize the familiar structure of the head (see, among others, Simpson 1997;
Härtel et al. 2000), as well as two large-scale, Kelvin–Helmholtz-type vortices at
the interface that separates the current from the ambient fluid. As it encounters
the cylinder, the current head is deflected upward. Inertia keeps it moving forward,
and it eventually reattaches along the bottom wall several diameters downstream of
the cylinder. Eventually, the flow reaches a quasi-steady state as the current head
continues to propagate downstream of the cylinder.

The front position xf /h, defined as the foremost location of the c∗ = 0.5 contour,
is shown as a function of time in figure 3 for the reference current, as well as various
other values of D/h. The front speed can be inferred from the slope of the curve.
After an initial transient, the front speed is seen to be constant and equal to the
case without submerged cylinder, until the current reaches the vicinity of the cylinder
around t/(h/ub) ≈ 5 (t/(h/V ) ≈ 3). Table 2 shows the value of the front speed V/ub

during the constant-speed phase for different parameter combinations. The current
head then experiences a deceleration whose strength and duration depend on the size
of the cylinder. Eventually, the current front speeds up again. Figure 3 shows that
large obstacles reduce the post-interaction front velocity permanently.

Figure 4 provides detailed information on the temporal evolution of the
concentration (left column) and vorticity (right column) fields for the reference case.
Instantaneous streamlines in the laboratory reference frame are superimposed on the
concentration field and yield additional insight into the flow structures. Following
Ermanyuk & Gavrilov (2005a , b), we distinguish between the impact, transient and
quasi-steady stages of the flow. Already before the current front reaches the cylinder,
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it accelerates the fluid in its vicinity, thereby leading to the formation of a separated
flow region above and behind the cylinder. The impingement of the current on the
cylinder coincides with the transition from impact to transient stage. As the current
impinges on the cylinder and is deflected upward, the separated flow region increases
in size. Several diameters downstream of the cylinder, the current plunges downward
and reattaches to the bottom wall. In this process, it traps some of the ambient fluid
in the near wake of the cylinder. Eventually, the gravity current re-establishes itself
downstream of the cylinder, and the quasi-steady stage begins. Note the difference in
the depth of the dense fluid layer upstream and downstream of the cylinder during
this quasi-steady stage, similar to the observation by Ermanyuk & Gavrilov (2005a).

Throughout the impact and transient stages, we observe the transient existence
of separated flow regions both upstream and downstream of the cylinder. Such
recirculation regions along the wall are known to exist even in the absence of a
submerged cylinder (Härtel et al. 2000; Cantero et al. 2007; Ooi et al. 2007). When a
cylinder is present, these regions approach the cylinder from far upstream. Similarly,
the vortices that are shed on the downstream side of the cylinder are intermittently
swept downstream. The effect of these recirculation regions on the forces affecting the
cylinder will be analysed below.

3.2. Drag, lift and torque as functions of time for the reference case and the effect of
the cylinder size

The force Fi exerted by the fluid on the cylinder can be evaluated as

Fi =

∫
A

−ni(p − pref ) + nj μ

(
∂ui

∂xj

+
∂uj

∂xi

)
dA, (3.1)

where A denotes the surface of the cylinder, nj its outer normal and pref a reference
pressure that depends on time only. We refer to the first term on the right-hand side of
(3.1) as the pressure component and to the second term as the viscous component. In
order to eliminate any effect of pref on the temporal fluctuations of Fi , we evaluate pref

at x =L − l and y = H/2, where the velocity is negligible throughout the simulation.
The x- and y-component of Fi are referred to as drag FD and lift FL, respectively.

Figure 5(a) shows the variation of the drag with time for various cylinder sizes
D/h. Note that FD has been normalized by means of the cylinder size D rather
than the lock height h, as this results in a better collapse of the data for different
values of D/h. As the current approaches the cylinder, the drag is seen to increase
monotonically with time in an exponential fashion, until it saturates and reaches
a first maximum. The value of the drag at this first maximum is referred to as the
maximum drag FD,max. As stated earlier, the time at which it occurs is taken as the end
of the impact and the beginning of the transient stage. Subsequently, the drag declines
rapidly with time and reaches a pronounced minimum whose value decreases with the
cylinder size and even drops below zero for D/h= 0.05. The dimensionless time of
the drag minimum increases with the cylinder size. Successively smaller fluctuations
follow during the transient stage, and the drag settles down to a slowly decaying
value during the quasi-steady stage.

Figure 5(a) indicates that both maximum and quasi-steady drag increase with D/h.
At first glance, this may appear at odds with available experimental measurements
for rectangular cylinders, in which the maximum drag is seen to decrease with D/h,
while its quasi-steady value remains approximately constant (figure 5a in Ermanyuk &
Gavrilov 2005a). This apparent contradiction is due to differences in the way in which
the dimensionless parameters are varied in the simulations and experiments. In the
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Figure 5. Effect of D/h on the time-dependent drag (a) and lift (b) in partial-depth H/h = 5
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Figure 6. Temporal evolution of the drag (a) and the lift (b) for the reference case. Also
shown in (a) are the pressure forces on the upstream Fw (dashed line) and downstream Fe

(dash-dotted line) faces. The viscous drag and lift components (thin solid line) are much
smaller than the pressure components.

simulations, D/h is varied, while H/h and Re are kept constant. In the experiments,
on the other hand, D/h, H/h and Re are all varied simultaneously as a result
of selecting the channel height as the length scale, rather than the lock height.
Thus, the respective data do not describe comparable flow situations. A quantitative
comparison to be discussed below, however, will show that if all three of the above
parameters match the experimental values, two-dimensional simulations capture the
impact stage quite accurately, while three-dimensional simulations are required to
obtain appropriate force values for the quasi-steady stage, at high values of Re.

We will now relate the drag data to the flow-field structure. For the reference case,
figure 6(a) shows both the overall drag force and its individual components due to
the pressure forces on the upstream (Fw) and downstream (Fe) faces of the cylinder
and the viscous drag force (Fv) acting on its top surface. The sign of the pressure
forces is positive when directed from the fluid towards the solid wall. The overall drag
is thus obtained as

FD =Fw − Fe + Fv. (3.2)
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For all simulations, we found the viscous drag component to remain close to zero, so
that the pressure forces on the upstream and downstream faces dictate the temporal
evolution of the drag.

For the reference case, the time intervals for the impact, transient and quasi-steady
stages are approximately 1 < t/(h/V ) < 3.3, 3.3 < t/(h/V ) < 8.8 and t/(h/V ) > 8.8,
respectively.

Closer inspection of figure 4 indicates that by t/(h/V ) = 3 the flow has separated
at the upstream top corner. Note also the small recirculation region that is forming
downstream of the cylinder at this time. The transport of the negative vorticity
generated at the upstream top corner into this recirculation region can be recognized
at t/(h/V ) = 3 in figure 4. Interestingly, this recirculation region on the downstream
side is not primarily responsible for the drag maximum at t/(h/V ) ≈ 3.3. Rather,
figure 6(a) shows that the first drag maximum is produced by the pressure increase
on the upstream side, as the approaching gravity current decelerates and sets the fluid
immediately upstream of the cylinder in motion.

Thereafter, as figure 6(a) shows, the drag decreases during the time interval
t/(h/V ) ≈ 3.3–4.4 due to a combination of decreasing Fw and increasing Fe. The
decrease in Fw results from the formation of a strong recirculation region upstream
of the cylinder, which is seen in the t/(h/V ) = 4.1 frame of figure 4. The t/(h/V ) = 3.3
and t/(h/V ) = 4.1 time frames of figure 4 also show how the recirculation region
behind the cylinder is convected downstream and away from the obstacle, which
contributes to the sudden increase in Fe and thus to the drag decrease.

During the time interval t/(h/V ) ≈ 4.4–5.3, a pronounced drag increase is observed.
The vorticity field for t/(h/V ) = 4.7 in figure 4 shows the clockwise vortex upstream
of the cylinder being convected past the cylinder and into the recirculation region
downstream of it. This process appears to be related to the passing of a Kelvin–
Helmholtz billow. Hence the pressure force acting on the upstream face increases,
while its downstream counterpart decreases. The drag thus reaches a second maximum
at t/(h/V ) ≈ 5.3. Interestingly, the second drag maximum does not occur in the
H/h =5 and D/h = 0.4 cases, as can be seen from figure 5(a). Here the convection
of negative vorticity past the cylinder does not occur, likely because of the blockage
effect due to the relatively large cylinder.

Figure 5(a) shows that for the reference case the drag begins to decrease beyond
t/(h/V ) ≈ 11. A similar decrease sets in at slightly different times for other parameter
combinations. Our analysis generally focuses on the flow evolution before this effect
becomes dominant.

Results for the variation of lift with time for different values of D/h are shown
in figure 5(b). Note that, just as for the drag, we normalize the lift by means of the
cylinder size D, rather than the lock height h, in order to obtain a better collapse of
the data. As the current approaches the cylinder, the lift dips below zero, only to rise
rapidly as the current reaches the cylinder. We observe that maximum lift and drag
are reached nearly simultaneously at t/(h/V ) ≈ 3.3. Subsequently, the lift decreases
dramatically to values below zero, indicating a downward force on the cylinder. For
smaller cylinders, the maximum downward force is reached more quickly, similar to
the drag, whereas the magnitude of the downward lift force depends only weakly on
the cylinder size.

Figure 6(b) shows that, just as for the drag, the lift force is dominated by the
pressure contribution, compared to which the viscous contribution is negligible.
The lift is seen to reach an upward-directed maximum by t/(h/V ) ≈ 3.3. At this
time, figure 4 shows a large recirculation region above and downstream of the
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Figure 7. Temporal evolution of the torque (solid line) for the reference case. The contri-
butions to the torque from the pressure (dashed line) and viscous (dash-dotted line) forces are
seen to be of comparable magnitude.

cylinder. Thus, the initial increase of the lift is produced by the suction associated
with the presence of this recirculation region above the cylinder. The t/(h/V ) = 3.3
and t/(h/V ) = 4.1 time frames of figure 4 show that this recirculation region is
later convected downstream, resulting in a decrease of the lift (cf. figure 6b). By
t/(h/V ) ≈ 4.1 the lift reaches a downward extremum. In addition, this decrease of
the lift is also produced by an increase of the hydrostatic pressure on top of the
cylinder, as the dense fluid engulfs the cylinder. The subsequent increase in the lift
during the interval t/(h/V ) ≈ 4.1–5 is again related to the convection of an intense
vorticity region past the top surface of the cylinder (cf. figure 4). As this patch of
vorticity enters the downstream recirculation region, the lift decreases again during
t/(h/V ) ≈ 5–6.2. Eventually, the lift reaches a negative quasi-steady state value, whose
value can be estimated as follows: Initially, the hydrostatic pressure on top of the
cylinder is ρ0g(H − D). During the quasi-steady state stage, the height of the dense
fluid layer engulfing the cylinder is approximately h/2 (cf. figure 4). This gives a
hydrostatic pressure on top of the cylinder of ρ0g(H − h/2) + ρ1g(h/2 − D). The
quasi-steady state lift results from the difference of these hydrostatic pressures, and
we obtain FL,st/0.5ρ0Du2

b = −1 + 2(D/h). This expression provides a rough estimate.
The above results indicate that by scaling the dimensionless drag and lift with

D, they remain of the same order when varying D/h. We will further discuss the
hydrostatic (ρ0hu2

b or equivalently ρ0hg′h) and dynamic (ρ0DV 2) components of the
drag in § § 5.2 and 6.

Figure 7 displays the temporal variation of the torque around the geometric centre
of the cylinder. Also indicated are the individual contributions to the torque from
pressure and viscous forces. Interestingly, even though figure 6 showed pressure forces
to be an order of magnitude larger than viscous forces, their contributions to the
torque are comparable. This reflects the larger lever of the viscous forces, which
act tangentially on each surface. Close inspection of the pressure profile along each
surface, on the other hand, shows a fairly uniform distribution, which implies a small
torque. Based on the small value of the torque, it can be assumed with good accuracy
that the force vector acts on the cylinder through its geometric centre. For practical
applications, this simplifies the stress calculation on the foundation of the submerged
structure. The fact that the torque, when scaled as T/ρ0D

2V 2, is O(10−2) suggests that
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Figure 8. Hodograph of the tip of the force vector for the reference case. The force vector is
directed downstream and downward most of the time.
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Figure 9. Effect of H/h on the total drag (a) and lift (b) variation with time: H/h = 1
(thin solid line), 1.25 (dashed line), 2.5 (dash-dotted line), 5 (thick solid line). The largest
dimensionless drag is obtained for the full-depth case.

it may be more instructive to use a different scaling. We note that when including the
dynamic viscosity μ in the scaling of the torque, we obtain that T/μDV is O(1).

A hodograph of the force vector is shown in figure 8 for the reference case.
The maximum force vector is shown in this figure, where it can be seen to form
an angle of 10.9◦ with the horizontal axis. Not surprisingly, the maximum force
vector was observed to occur at the time of the maximum drag (t/(h/V ) = 3.3).
Interestingly, while the maximum force vector is directed downstream and upward,
figure 8 shows that the force vector is directed downstream and downward most of the
time. In practical applications, this information might be useful for design purposes
of submarine structures under the potential impact of gravity currents.

3.3. Effect of the channel depth

Figure 9(a) shows the drag as function of time for D/h = 0.15 and different channel
depths H/h. The data collapse most closely if the front velocity V , rather than
the buoyancy velocity ub, is employed to normalize FD and time. This reflects the
dependence of the front velocity on H/h (Benjamin 1968; Simpson 1997). The largest
dimensionless drag is observed for the full-depth case, H/h = 1. Note that the curves
for H/h =5 and 2.5 track each other closely during the impact stage, which indicates
that for a channel depth of 2.5 times the lock depth we already approach the deep
ambient case.
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Figure 10. Temporal evolution of the drag for the full-depth H/h = 1 case. Also shown are
the pressure forces on the upstream Fw (dashed line) and downstream Fe (dash-dotted line)
faces. In contrast to the partial-depth case, the upstream pressure force for the full-depth case
fluctuates only mildly after reaching its first maximum.

Figure 9(a) shows that, after the first drag maximum, the drag fluctuates more
strongly for the partial-depth H/h = 5 case, as compared to the full-depth case
H/h = 1. For the former case, figure 6(a) indicates that both upstream and
downstream pressure forces contribute to the drag decrease during the time interval
t/(h/V ) ≈ 3.3–4.4. In contrast, for the full-depth case, H/h =1, the drag decrease
is mainly due to an increasing downstream face pressure (cf. figure 10), while
the variation of the upstream pressure force is small. In order to understand the
reason for this discrepancy, it is instructive to analyse the flow-field evolution for
the full-depth H/h = 1 case (cf. figure 11). In the t/(h/V ) = 3.9 time frame, note
the presence of both a wall recirculation region and a Kelvin–Helmholtz billow
upstream of the cylinder. These flow structures remain almost stationary during
the time interval t/(h/V ) ≈ 3–3.9 as the drag decreases. This explains the small
variation of the upstream face pressure force during the interval t/(h/V ) ≈ 3–3.9.
In contrast, as explained previously, upstream recirculation regions are convected
vigorously towards the cylinder in the H/h = 5 case as Kelvin–Helmholtz billows
pass by, having a noticeable influence on the drag.

Figure 10 shows that the full-depth drag increases during t/(h/V ) ≈ 3.9–5.3. The
t/(h/V ) = 3.9 frame of figure 11 indicates a continuous supply of vorticity from the
cylinder top into the wake during this time interval, similar to the partial-depth case.
In contrast to the partial-depth case, however, the full-depth case does not show the
transport of vorticity from an upstream recirculation region into the wake. Thus the
full-depth case experiences a less drastic drag fluctuation than the partial-depth case.

Data for the effect of H/h on the variation of the lift force FL with time are shown
in figure 9(b). Interestingly, the curves for all values of H/h track each other closely
during the impact stage, so that the magnitude of the maximum lift force depends
only weakly on H/h. However, the pronounced second lift maximum that we had
observed for the partial-depth case is considerably weaker for the full-depth case.
This reflects the reduced transport of concentrated vorticity patches past the top of
the cylinder in the full-depth case, as described above.

3.4. Effect of the Reynolds number

The influence of the Reynolds number on the time-dependent drag force is displayed
in figure 12(a). This figure shows that while the magnitude of the first maximum is
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Figure 11. Temporal evolution of the concentration c∗ (left) and the vorticityω/(V/h) (right)
fields as the gravity current interacts with the cylinder for the full-depth (H/h =1) case.
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Figure 12. Effect of Re on drag (a) and lift (b) fluctuations in partial-depth H/h = 5 gravity
currents: Re= 2000 (thick solid line), Re= 4000 (dashed line) and Re= 10 000 (thin solid line).
For higher Re values, the fluctuations are stronger and persist over longer times.

affected only weakly by Re, subsequent maxima and minima are more pronounced for
higher Re values. Similarly, figure 12(b) shows an increase of lift fluctuations with Re.
In the following, we will identify the reasons for the larger drag and lift fluctuations
at higher Re values.
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Figure 13. Instantaneous flow fields at the time of the first drag minimum for different
simulations: (a) H/h = 1; (b) H/h = 5 (reference case); (c) H/h = 5 with slip bottom; (d )
H/h = 5, Re= 10 000. The grey shading denotes vorticity (ω/(V/h)) contours. Streamlines
highlight the upstream and downstream recirculation regions. Notice the absence of the
upstream recirculation region in the case with a slip bottom boundary.

For the higher-Re case, the vorticity contours in figure 13 show more intense
recirculation regions both upstream and downstream of the cylinder, at the time of
the first drag minimum. Similar observations can be made at other times as well,
consistent with the more pronounced force fluctuations at higher Re. Furthermore,
for large Re these unsteady recirculation regions persist for longer times.

Figure 14 shows the temporal evolution of the drag for the H/h = 5 and Re = 104

case, along with the upstream and downstream pressure forces. Note that the drag
fluctuations are dominated by the upstream face pressure force, suggesting that events
upstream of the cylinder are responsible for the observed force fluctuations. The time
interval between the drag minima shown in figure 14 is �t/(h/V ) ≈ 2.5, which gives a
frequency f of the force oscillations f/(V/h) ≈ 0.4. An analysis of the lift data yields
the same value for the dominant frequency.

Figure 15 shows the location of zero shear stress at the bottom wall as function of
time, for the Re = 2000 and Re = 104 cases. The thick grey line indicates the cylinder
position. This form of visualization allows us to study the formation and convection of
recirculation regions in the vicinity of the cylinder. For Re = 2000, we observe a pair of
recirculation regions propagating along the bottom wall towards the cylinder during
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Figure 14. Temporal evolution of the drag for the H/h = 5 and Re =104 case. Also shown are
the pressure force Fw (dashed line) and Fe (dash-dotted line) on the upstream and downstream
faces. The drag fluctuations are dominated by the pressure force on the upstream face.

t/
(h

/V
)

0

5

10

15

t/
(h

/V
)

0

5

10

15

(a)

x/h
1 2 3 4 5

(b)

Figure 15. Location of zero shear stress at the bottom wall for the partial-depth H/h = 5 cases
with Re= 2000 (a) and Re= 104 (b). The thick grey line denotes the location of the cylinder.
The periodic formation and subsequent propagation of recirculation regions is sustained for
longer times at larger Re values.

the time interval t/(h/V ) ≈ 3–6.5. No additional recirculation regions form thereafter.
On the other hand, for Re =104 the formation and convection of recirculation regions
along the bottom wall is sustained for much longer times. The figure indicates that
these near-wall recirculation regions are generated at time intervals of �t/(h/V ) ≈ 2.5,
which suggests that they are primarily responsible for the drag fluctuations described
above.
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Figure 16. Effect of H/h on the total drag variation with time for Re= 10 000: H/h = 1
(thin solid line), 5 (thick solid line).

Earlier observations by Härtel et al. (2000) for gravity currents without submerged
cylinders had shown that the formation of recirculation regions along the bottom
wall is closely linked to the Kelvin–Helmholtz billows in the interfacial region. An
analysis of the flow field in the presence of a cylinder, for the reference case of
H/h = 5 and Re =2000, confirms this scenario. Figure 15(a) shows that the flow
first separates at t/(h/V ) ≈ 3 and x/h= 2. From figure 2 we see that at this time a
Kelvin–Helmholtz billow is located near x/h= 1.6. The fluid right underneath this
billow is accelerated in the streamwise direction but subsequently slows down as it
encounters an adverse pressure gradient. This, in turn, leads to the separation of the
flow from the bottom wall and to the formation of a recirculation region. Hence, the
existence of this recirculation region is due to a vortex-induced separation process
(Doligalski, Smith & Walker 1994).

We now revisit the effect of the channel depth (H/h) for a higher Reynolds number.
Figure 16 shows that for Re= 10 000 the initial fluctuation of the drag in the interval
t/(h/V ) ≈ 3.3–5 is stronger in partial-depth H/h = 5 currents than in full-depth
H/h = 1 currents, just as we had observed earlier for Re = 2000 (cf. figure 9a). The
mechanism of this initial drag fluctuation is the same at both Reynolds numbers. In
contrast to lower Re values, however, the vortical structures upstream of the cylinder
in full-depth, high-Re currents are no longer stationary by t/(h/V ) ≈ 5.5. Instead, they
are convected towards the cylinder. In this way, they produce the drag fluctuations
shown in figure 16, in the same manner as previously seen for partial-depth H/h =5
currents. Figure 16 also shows that for t/(h/V ) > 7 the drag fluctuations are larger
in full-depth currents; the same was observed for the lift. These stronger fluctuations
in full-depth currents are the result of more intense Kelvin–Helmholtz vortices at the
interface between the two fluids. These vortices are stronger in full-depth currents
because of the larger velocity difference between the two currents.

3.5. Effect of a slip bottom boundary

The importance of recirculation regions approaching the cylinder from upstream is
further supported by figure 17, which analyses the effect of the bottom boundary
condition on the drag for a partial-depth current. We note that the gravity-current
front speed V (rather than ub) is used as the velocity scale, to account for the fact
that the front speed for the slip case is about 20 % higher than for the no-slip case (cf.
table 2). While the maximum and the quasi-steady state drags are seen to depend only
weakly on the bottom boundary condition, the drag decrease after the first maximum
is noticeably reduced in the slip case. Figure 17(b) indicates that this is a result of
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Figure 17. Effect of a no-slip (thick lines) or slip (thin lines) bottom boundary condition
on the temporal evolution of the (a) drag and (b) pressure forces at the upstream (dashed
line) and downstream (dash-dotted line) faces of the cylinder, in partial-depth H/h = 5 gravity
currents. The initial drag fluctuation is noticeably reduced for the case with a slip bottom, as
a result of weaker fluctuations in both the upstream and downstream pressure forces. This
confirms that the formation and propagation of an upstream recirculation region for a no-slip
bottom boundary strongly influences the drag.
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Figure 18. Effect of Sc on the drag variation with time in partial-depth H/h = 5 gravity
currents at (a) Re= 2000 and (b) Re= 10 000: Sc= 1 (solid line); Sc= 10 (dashed line).

weaker fluctuations in both the upstream and downstream pressure forces. Here, the
weaker fluctuation of the upstream pressure force in the slip case reflects the absence
of a recirculation region approaching from upstream (cf. figure 13). On the other
hand, the downstream pressure fluctuations are reduced in the slip case because the
wake recirculation region remains attached to the cylinder, rather than being swept
downstream.

3.6. Effect of the Schmidt number

Figure 18 shows the effect of Sc on the drag variation with time for currents with
H/h =5 and (a) Re = 2000 and (b) Re = 10 000. The effect of Sc is negligible during
the impact stage (t/(h/V ) < 3.3) and small at late times during the quasi-steady
stage. The main effect of Sc manifests as a decrease of the drag fluctuation during
t/(h/V ) = 4.2–6.5, when Sc is increased from 1 to 10. Similar observations are seen
for the lift.
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4. Results from three-dimensional simulations
In this section we describe results from three three-dimensional LESs. The first

simulation reproduces an existing experimental configuration, and its results will
be compared to laboratory measurements. Subsequent three-dimensional simulations
serve to establish the range of validity of two-dimensional simulations, along with
the influence of the Reynolds number. Based on these simulations, we discuss the
three-dimensional flow structures that form in the vicinity of the cylinder and their
effect on the overall drag and its spanwise variation.

4.1. Comparison with experiments

In order to reproduce the experimental conditions of Ermanyuk & Gavrilov (2005a),
a configuration similar to that depicted in figure 1 is employed but with a rectangular
cylinder of height D = 0.25h and width W = 0.125h Furthermore, in following the
experiments a gap of 0.0625h is left between the bottom wall and the cylinder bottom
face. While this very narrow gap has a relatively small influence on the structure of
the flow field, its presence is nevertheless required for the evaluation of lift data that
can be compared with experimental values. Other parameter values are L/h = 40,
l/h = 20, H/h =1.25, Re = 7084 and Sc= 10. The domain length in the spanwise
direction is 1.25h. For comparison purposes, a two-dimensional simulation is carried
out for this configuration as well, with a 2520 × 256 grid, while 2520 × 256 × 50 points
are used in the three-dimensional simulation. The above parameter values represent
the experimental data set of Ermanyuk & Gavrilov (2005a) with the lowest value of
the cylinder height to lock height ratio, so that this ratio lies within the range for
D/h discussed earlier.

Even though the value of Sc chosen for the simulations is two orders of magnitude
less than in the experiments, the values of Pe in both simulations (O(104)) and
experiments (O(106)) are sufficiently high for the effects of diffusion on the dynamics
of the interaction to be negligible, as will be evident later. In the experiments and
the two-dimensional simulation, the rectangular region between x = −l and x =0
and between y = h and y = H (cf. figure 1) is filled with lighter fluid. On the other
hand, in the three-dimensional simulation this region is taken to be a solid. This
difference in the simulation approach has a negligible effect on the dynamics of the
current, as the front speed varies by less than 2 % between the two- and three-
dimensional simulations. Furthermore, the structure of the gravity-current head, and
of the region upstream of it, was seen to be qualitatively very similar in the experiments
and in the three-dimensional simulation. The experiments employ a channel whose
width is approximately one order of magnitude larger than the rectangular cylinder
height, so that the end effects should be negligible. The three-dimensional simulations
reproduce this situation by using periodic boundary conditions in the spanwise
direction. Following the approach of Ooi et al. (2007), three-dimensionality is triggered
by means of small random disturbances in the initial conditions.

Figure 19 shows the evolution of the flow field by means of the c∗ =0.1 isosurface.
The highly three-dimensional flow structures resulting from spanwise variations of
the Kelvin–Helmholtz vortices, and from the lobe-and-cleft instability of the current
front, are visible in figure 19(a), at a time before impact.

Figure 20 shows the temporal evolution of the spanwise-averaged drag and lift
obtained from the two- and three-dimensional simulations and from the experiments
by Ermanyuk & Gavrilov (2005a). Only the pressure components of the drag and lift
calculated from the simulations are shown in figure 20 and in the remaining figures
of § 4, as the viscous components are negligible. The exact distance between the lock
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Figure 19. Temporal evolution of the flow field in a three-dimensional simulation with
H/h = 1.25, Re= 7084 and Sc= 10. The concentration isosurface c∗ = 0.1 is shown at
t/(h/V ) = 5.78 (a), 7.35 (b) and 14.7 (c). Note the gravity current’s lobe-and-cleft structure
in (a). The cylinder is outlined with wireframes in (b) to highlight the front structure during
impact.
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Figure 20. Temporal evolution of the drag (a) and lift (b) in the experiments by Ermanyuk &
Gavrilov (2005a) (solid line, squares), the three-dimensional simulation (dashed line) and the
two-dimensional simulation (dash-dotted line). While the three-dimensional simulation results
compare well with experimental measurements, the two-dimensional simulation overpredicts
the force fluctuations.
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Figure 21. Temporal variation of the drag at different spanwise locations from the
three-dimensional simulation for H/h = 1.25, Re = 7084 and Sc= 10: z/h = 0.25 (thick solid
line), z/h = 0.5 (dashed line), z/h = 0.75 (dash-dotted line) and z/h = 1 (thin solid line).

gate and the cylinder lc/h is not provided in Ermanyuk & Gavrilov (2005a) and is
approximated here by using the front speed of the current and the time of maximum
drag given in the experiments, which gives lc/h= 7.125. Furthermore, in order to
facilitate the comparison, the experimental curves in figure 20 are shifted along the
abscissa so that the first drag maximum occurs at identical times in the experiment
and the simulations.

Figure 20 demonstrates good overall agreement between the experimental results
and those of the three-dimensional simulation. This confirms the negligible effect
of Sc and of the slightly different flow configuration used in the three-dimensional
simulation. A noticeable difference in figure 20(b) concerns the maximum lift value at
t/(h/V ) = 7.35, with a value of 1.32 in the simulations and 1 in the experiments. The
likely cause for this difference lies in the low data-sampling rate of the experiments
during impact. As pointed out by a referee, the force gauges employed in the
experiments by Ermanyuk & Gavrilov (2005a) likely can resolve only time scales
of about δt =0.12s or larger, which corresponds to a dimensionless value of 0.1.
Hence, they may have slightly underestimated the very sharp first peak.

4.2. Range of validity of two-dimensional simulations

Figure 20 shows that throughout the impact stage, up to t/(h/V ) = 7.35, the two-
dimensional simulation results closely reproduce their three-dimensional counterparts.
Hence the initial force variations are dominated by the two-dimensional mechanisms
described in § 3.3, although, as we will see below, some spanwise drag variation exists
during this interval. For t/(h/V ) > 10, the two-dimensional simulation overpredicts the
force fluctuations, indicating that three-dimensional flow features become important
during this stage.

Figure 21 indicates that in the three-dimensional flow the temporal drag variations
at each individual spanwise location are smaller than in the corresponding two-
dimensional flow. The spanwise differences between local drag values are relatively
minor. Hence the lower global drag fluctuations observed in the three-dimensional
simulation are not simply a consequence of the spanwise integration but rather reflect
a qualitatively different flow structure. This is confirmed by figure 22, which compares
the spanwise vorticity fields from the two- and three-dimensional simulations during
the quasi-steady state. Note that the strong and coherent Kelvin–Helmholtz vortices
visible in the two-dimensional simulation are largely absent in the three-dimensional
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Figure 22. Comparison of the instantaneous spanwise vorticity field (ωz/(V/h)) at t/(h/V ) =
15.44 during the quasi-steady state between the two-dimensional (a) and three-dimensional (b)
simulations for H/h = 1.25, Re= 7084 and Sc= 10. The z/h = 0.625 middle plane is shown
in (b).

flow. This is consistent with earlier observations for gravity-current flows without
obstacles (e.g. Härtel et al. 2000; Ooi et al. 2007).

Section 3.4 had identified the impact of vortical structures propagating along
the bottom wall as the main source of the two-dimensional drag fluctuations.
These vortical structures owe their existence to strong, coherent Kelvin–Helmholtz
vortices in the mixing layer. In three-dimensional flows, these Kelvin–Helmholtz
vortices are significantly less coherent, so that the recirculation regions along
the wall are less pronounced, which in turn reduces the drag fluctuations. We
remark that this reason for the lower drag fluctuations in three dimensions is
fundamentally different from what has been observed in constant-density flows past
cylinders far away from walls. There the larger drag fluctuations predicted by two-
dimensional simulations result from vortices that shed more closely to the cylinder (e.g.
Mittal & Balachandar 1995).

Figure 23 shows the temporal evolution of the spanwise-averaged drag and lift
obtained from two- and three-dimensional simulations with the same parameters as
the reference case except Re = 10 000, L/h= 28, l/h= 12 and lc/h= 9. The longer
distance between the gate and the cylinder, lc/h= 9 instead of 3, is required to let the
Kelvin–Helmholtz vortices break up and the lobe-and-cleft structure evolve. A grid
of 1200 × 300 × 50 (1200 × 300) is used in the three-dimensional (two-dimensional)
simulation. The domain length in the spanwise direction is h. The small effect of
lc/h on the temporal evolution of the forces in the two-dimensional simulations
is reflected by the corresponding curves in figures 23 and 12. Note that the two-
dimensional simulation in figure 23 accurately captures the temporal force variation
during impact (t/(h/V ) < 9), while it overpredicts subsequent fluctuations. Again, this
overprediction can be traced to the more coherent Kelvin–Helmholtz vortices in the
two-dimensional simulation (from data not shown here). Thus, the observations on the
effect of three-dimensionality on the force fluctuations made earlier in this section for
the experimental configuration of Ermanyuk & Gavrilov (2005a) are also applicable
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Figure 23. Temporal evolution of the drag (a) and lift (b) from two-dimensional (thin lines)
and three-dimensional (thick lines) simulations with the parameters of the reference case, except
Re =10 000, L/h =28, l/h =12 and lc/h = 9. The two-dimensional simulation reproduces
the time-dependent forces during impact (t/(h/V ) < 9), while it overpredicts the subsequent
fluctuations.
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Figure 24. Temporal evolution of the spanwise-averaged drag (a) and lift (b) from three-
dimensional simulations for Re= 10 000 (thick lines) and Re =50 000 (thin lines) and the
parameters of the reference case, except L/h =28, l/h = 12 and lc/h = 9. An increase of Re
from 10 000 to 50 000 does not have a strong effect on the magnitude of the force fluctuations.

for flows without a gap between the wall and the cylinder and for parameter values
comparable to those considered in § 3.

4.3. Effect of the Reynolds number

Figure 24 shows that an increase of Re from 10 000 to 50 000 has a relatively
small effect on the magnitude of the force fluctuations. This finding represents an
important result, as it suggests that lower-Re simulations can make useful predictions
for applications involving high-Re gravity currents.

We now compare the temporal evolution of the flow field, along with the associated
drag and pressure forces at the faces of the cylinder, for the reference case and the
three-dimensional simulation at Re = 50 000. A comparison of figures 6(a) and 25
shows that in both cases a similar increase of Fw results in the first drag maximum
when the gravity current impinges on the cylinder (cf. figures 4 and 26a). Furthermore,
similar fluctuations of Fw and Fe lead to the drag variation between its first and second
maximum. In the two cases compared here, these fluctuations of Fw and Fe are seen
to occur as Kelvin–Helmholtz billows pass by the cylinder, and patches of negative
vorticity are convected towards the cylinder. These billows and vorticity patches take
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Figure 25. Temporal evolution of the spanwise-averaged drag from the three-dimensional
simulation at Re= 50 000 and the parameters of the reference case, except for L/h =28,
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Figure 26. Spanwise vorticity ωz/(V/h) fields at z/h = 0.5 and at different times, from the
three-dimensional simulation at Re= 50 000 and the parameters of the reference case, except
L/h =28, l/h = 12 and lc/h = 9: (a) t/(h/V ) = 8.8; (b) t/(h/V ) = 10.9; and (c) t/(h/V ) = 17.2.

the form of strong coherent vortical structures in the two-dimensional low-Re reference
case (cf. figure 4), while they are somewhat more intermittent in the three-dimensional
Re= 50 000 case (cf. figure 26b). In this figure, the centre of a Kelvin–Helmholtz billow
is located at x/h ≈ 8 and y/h ≈ 0.5. Figures 6(a) and 25 show that the drag reaches
a quasi-steady value later on. In the two cases considered here, the wake during the
later quasi-steady stage is distorted by the dense fluid downstream of the cylinder
(cf. figures 4 and 26c). Similar observations hold for the temporal evolution of the
lift (cf. figures 6b and 23b). Note that the force fluctuations during the transient
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Figure 27. Hodograph of the tip of the force vector from the three-dimensional simulation at
Re =50 000 and the parameters of the reference case, except L/h =28, l/h = 12 and lc/h = 9.
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Figure 28. Spanwise variation of the drag at different times, from a three-dimensional
simulation with H/h = 1.25, Re= 7, 084 and Sc= 10: t/(h/V ) = 7.35 (first drag maximum, thick
solid line), t/(h/V ) = 10 (second drag maximum, dashed line), t/(h/V ) = 13.12 (dash-dotted
line), t/(h/V ) = 14.7 (thin solid line).

stage are larger in the reference case, as can be seen by comparing the hodographs
in figures 8 and 27. Interestingly, the flow processes leading to the force fluctuations
in the high-Re, three-dimensional simulations are qualitatively more similar to those
seen in two-dimensional simulations at lower Re than at equivalent Re.

4.4. Spanwise variation of the drag and associated flow structures

We now discuss the spanwise variation of the drag and associated flow structures,
based on results from a three-dimensional simulation with H/h = 1.25, Re = 7084 and
Sc= 10. Figure 28 shows spanwise peak-to-peak variations of the local drag up to
20 %. A detailed analysis indicates that these variations are mainly due to spanwise
pressure differences on the upstream face of the cylinder (Fw). This is in contrast
to constant-density flows past cylinders far away from walls, in which the spanwise
variation of the drag is determined by flow structures in the wake. Consequently, the
following discussion will focus on the flow upstream of the cylinder.

The typical lobe-and-cleft structure of the gravity-current front is visible in
figure 19(a). The temporal evolution of this structure during the time interval
t/(h/V ) = 5.78–7.35 is visualized by means of c∗ = 0.1 contours in the y/h = 0.0025
plane in figure 29. Note the continuous merging and splitting of the lobes as the
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Figure 30. Evolution of the spanwise variation of the drag (FD/0.5ρ0DV 2) with time, from
a three-dimensional simulation with H/h = 1.25, Re= 7084 and Sc= 10. The spanwise length
scale increases with time.

current approaches the cylinder. A comparison of figures 28 and 29 shows that at
t/(h/V ) = 7.35 those locations at which the lobes make contact with the cylinder
correlate well with the locations of maximum drag. During the quasi-steady stage, the
length scale of the spanwise drag variation increases, as compared to the impact stage
(cf. figure 28). This suggests that the flow structure upstream of the cylinder changes
as the current transitions from the impact to the quasi-steady stage. The effect of this
unsteady flow structure on the spanwise drag variation and its characteristic length
scale is visible in figure 30. Thus, while during impact the length scale of the spanwise
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Figure 31. Instantaneous velocity direction vectors on the upstream face of the cylinder (a),
and at the bottom wall immediately upstream of the cylinder (b) during the quasi-steady
state at t/(h/V ) = 14.7, from a three-dimensional simulation with H/h = 1.25, Re= 7084 and
Sc= 10. The cylinder height is 0.25h and its upstream face is located at x/h =7.125. The
approximate locations of repelling nodes (N), saddles (S) and attracting nodes (A) are shown.

drag variation is set by the front’s lobe-and-cleft structure, during the quasi-steady
stage a different unsteady flow structure determines the spanwise drag variation. This
flow structure is to be described next.

Figure 31 displays instantaneous velocity direction vectors (a) on the upstream face
of the cylinder and (b) at the bottom wall immediately upstream of the cylinder, at
a time during the quasi-steady state. A pattern of repelling nodes (N) and saddles
(S) can be recognized along the upstream cylinder face, while attracting nodes (A)
and saddles (S) exist at the bottom wall. A comparison of figure 31(a) with the
t/(h/V ) = 14.7 curve of figure 28 shows that the drag peaks occur approximately at
the node locations, where fluid impinges on the cylinder.

A further important characteristic of the flow structure, not shown here, is the
presence of recirculation regions immediately upstream of those locations at which
nodes exist along the upstream cylinder face. One way of visualizing the flow structure
upstream of the cylinder is shown in figure 32, by means of vorticity magnitude
contours (

√
ωi ωi/(V/h)).

The flow features upstream of the cylinder are qualitatively similar to those observed
in constant-density flows past bottom-mounted square cylinders (Martinuzzi & Tropea
1993 and Kim & Lee 2001). An idealized form of this type of cellular structure is
depicted in figure 33, which has been adapted from Martinuzzi & Tropea (1993).
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Figure 32. Flow structure upstream of the cylinder at t/(h/V ) = 14.7, from a three-
dimensional simulation with H/h = 1.25, Re= 7084 and Sc= 10. A contour of the vorticity
magnitude (

√
ωi ωi/(V/h)) in the vicinity of the cylinder is shown, together with wireframes

indicating the position of the cylinder.

Figure 33. Idealized model of the flow structure upstream of the cylinder. Adapted from
Martinuzzi & Tropea (1993).

These structures result in the spanwise non-uniformity of the flow and in preferred
flow paths over the cylinder (Martinuzzi & Tropea 1993; Kim & Lee 2001).

5. Analysis of the force during the impact stage
5.1. Maximum drag and lift amplitude

As seen in figure 6, at Re= 2000 the drag and lift vary most strongly during the impact
and transient stages. We will now discuss the effect of the various flow parameters
on the maximum drag FD,max and the lift amplitude FL,amp. This discussion will be
based on results from two-dimensional simulations, since they accurately capture this
stage, as discussed in § 4. We define the maximum drag as the first peak in the drag
versus time curve, which occurs approximately when the current meets the cylinder.
The lift amplitude is defined as the difference between the first maximum and the first
minimum of the lift versus time curve.

Since FD,max depends on ρ, D, H , h, V , g′ and μ, Buckingham’s Π-theorem yields

FD,max

1
2
ρ0DV 2

= f

(
D

h
,
H

h
,

V

ub

, Re

)
. (5.1)
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Figure 34. Effect of D/h on the maximum drag for the reference case (squares), the
reference case with a slip bottom (crosses) and the reference case with Re= 50 000 (circles).

A corresponding relationship holds for FL,amp. As discussed previously, the lock height
h represents a measure of the gravity-current height, since the latter is approximately
h/2.

Figure 34 illustrates the effect of D/h on the maximum drag FD,max/0.5ρ0DV 2

for the reference case, the reference case with a slip bottom wall and the reference
case with Re =50 000. To save computational effort, the Re = 50 000 data had to
be obtained for a shorter domain with L/h= 13, l/h= 6, lc/h= 3 and a grid of
2800 × 800 points. Note that the maximum drag increases with D/h in the range
D/h= 0.05–0.4 and subsequently plateaus in the range D/h= 0.4–0.6. In order to
interpret this result, it is helpful to define a boundary layer thickness δ90, at which the
time-averaged horizontal velocity reaches 90 % of its maximum. For gravity currents
with Re= 2000 (50 000), we find that δ90/h ≈ 0.14 (0.02). Thus, as long as D is O(δ90),
the dimensionless drag increases with D/h. This suggests that the drag increase with
D/h occurs because more of the cylinder is exposed to the larger velocity outside the
boundary layer. This explanation is supported by the slip wall results in figure 34,
which show the drag to increase much less in the absence of a viscous boundary layer.
For a slip bottom wall, the moderate drag increase with D/h is primarily due to the
blockage effect of the cylinder: a larger cylinder blocks more of the current, resulting
in a larger maximum drag.

Note that the above scaling considerations would change when the cylinder is
sufficiently large to completely block the current. While this case is not considered
here, it has been observed by other authors that a complete blockage of the current
occurs with cylinders whose height is at least twice the gravity-current height, i.e.
D/h ≈ 1 (Rottman et al. 1985; Lane-Serff et al. 1995). For these conditions, the drag
should be scaled with the lock height h or with the current height, rather than with
the cylinder height D.

For the reference case, figure 35 shows a slight increase of FD,max/0.5ρ0DV 2 with Re.
Since figure 6 had shown the viscous drag component to be negligible, the increase of
the maximum drag with Re must be due to a decrease in the boundary layer thickness
that exposes more of the cylinder to the free stream. However, note in figure 35 that
the overall effect of Re is rather small, with an asymptotic value O(2.7) being reached
for large Re.

The effect of H/h on the maximum drag FD,max/0.5ρ0DV 2 is shown in figure 36(a)
for no-slip bottom walls with D/h = 0.15 and D/h = 0.1 and for a slip bottom wall
with D/h= 0.15. Figure 36(b), which plots the same data against V/ub, demonstrates
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Figure 35. Effect of Re on the maximum drag during the impact stage, for the reference case.
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Figure 36. Effect of H/h (a) and V/ub (b) on the maximum drag for no-slip bottom walls
with D/h = 0.15 (squares) and D/h = 0.1 (circles) and for a slip bottom wall with D/h = 0.15
(crosses).

that the effect of varying H/h is primarily felt through the gravity-current front
velocity V/ub. Note the good collapse of the data for the no-slip and slip cases, which
confirms V/ub as the main parameter. This is remarkable, considering the strong
effect of H/h on the flow field: While the upper layer of fluid moves upstream with
very small velocities in the H/h = 5 case, it moves with a front speed approximately
equal to that of the gravity-current front speed in the H/h = 1 case.

Figure 37 quantifies the effect of D/h on the (first) lift amplitude FL,amp/0.5ρ0DV 2.
As D/h increases, we observe (from data not shown here) stronger vertical velocities
develop immediately upstream of the cylinder as more of the dense fluid is blocked.
This reinforces the clockwise vortex above the cylinder, thereby increasing the upward
suction. On the other hand, the effect of Re and H/h on the lift amplitude was found
to be negligible. We remark that at higher Re the maximum lift amplitude does
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Figure 37. Effect of D/h on the maximum lift amplitude for the reference case.

not necessarily occur during the impact stage, similar to our earlier finding for the
maximum drag.

5.2. Upper bound for the maximum drag

In order to derive an upper bound for the drag, consider an inviscid flow with H � h.
At the time of maximum drag, when the gravity current of height h/2 is about
to impinge on the square cylinder with side D, the hydrostatic pressure at y =0
immediately upstream of the cylinder can be estimated as ρ0g(H − h/2) + ρ1gh/2.
Its counterpart immediately downstream of the cylinder is ρ0gH . By applying these
hydrostatic pressure values along the entire respective face, which would be valid for
D � h, as occurs in practice, we obtain the hydrostatic component of the drag as

FD,hyd

ρ0Dg′ h
2

≈ 1. (5.2)

The dynamic component of the drag can be bounded correspondingly. Since the
wake flow downstream of the cylinder is quite weak, the dynamic drag component
results mostly from the deceleration of dense fluid flow as it encounters the cylinder.
Bernoulli’s principle gives

FD,dyn

1
2
ρ0DV 2

≈ 1. (5.3)

An upper bound for the maximum drag can now be obtained by adding (5.2) and
(5.3). For the reference case, with the front velocity V taken from the simulations, we
obtain FD,max/0.5ρ0DV 2 ≈ 3.9. The case of H/h = 5 with a slip bottom gives a value
of 3.16. A comparison of these values with the numerical results of figure 34 indicates
an overprediction of the simulation data by about 30 %.

Figure 36(b) shows a roughly 20 % increase of the maximum drag FD,max/0.5ρ0DV 2

as V/ub decreases. This effect is qualitatively captured by the above upper bound,
since (5.2) and (5.3) give FD,max/0.5ρ0DV 2 = 1 + (V/ub)

−2.

6. Comparison with constant-density flows
A comparison between the reference case and a similar, constant-density flow can

be instructive in terms of providing insight into the dominant mechanisms. For this
purpose, we conducted a two-dimensional simulation of constant-density flow around
a square cylinder with side D, positioned at the bottom of a channel with length
60D and height 8D. A no-slip (slip) condition is imposed at the bottom (top) wall, a
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Figure 38. Instantaneous flow field for the constant-density flow past a bottom-mounted
square cylinder at ReD = 177.

uniform velocity V at the inlet and a convective outflow condition at the downstream
boundary. A uniform Cartesian grid of size 1000 × 200 is employed.

The comparison is performed for ReD = 177, which is sufficiently low for three-
dimensional effects to be small and for the (near) wake to be steady in the constant-
density flow. The boundary layer thickness (δ90/D) at the cylinder location for the
constant-density flow is about 0.8, which is close to the value of 0.9 for the reference
case above.

The resultant flow field for the constant-density flow problem, shown in figure 38,
yields a quasi-steady drag FD/0.5ρ0DV 2 = 0.63. Note that this value is much lower
than the corresponding value of 1.44 observed for a square cylinder far away from
any wall at ReD =150 (Sohankar, Norberg & Davidson 1999). The lower value in the
present case is due to the bottom wall, which suppresses vortex shedding and induces
a boundary layer upstream of the cylinder.

The main difference between the gravity-current flow and its constant-density
counterpart is the absence of an impact stage in the latter, as it does not involve
the propagation of a front. However, even during the quasi-steady stage, significant
differences exist between the two flows. A comparison of the t/(h/V ) = 11.8 frame of
figure 4 with figure 38 shows that the length and maximum width of the reference case
wake are about 3.5D and D, respectively, and 18D and 1.25D in the constant-density
flow problem. The corresponding values for the drag are FD/0.5ρ0DV 2 = 0.94 and
0.63, respectively. Hence, the flow of dense fluid around the cylinder distorts the wake
and increases the drag. A close inspection of the simulation data shows that the higher
drag found in the reference case is mainly due to the presence of the hydrostatic drag
component:

FD,hyd =

∫
A

−nxphyd dA, (6.1)

where nx is the streamwise component of the outer normal ni of the cylinder surface
A, and the hydrostatic pressure is given by

phyd =

∫ H

y

c − c0

c1 − c0

dy. (6.2)

We find that for the reference case roughly one quarter of the total drag during the
quasi-steady stage is due to the hydrostatic drag component, which is absent in the
constant-density flow problem.

The analysis of the effects of D/h, H/h, Re and Sc (cf. figures 5, 9, 12 and
18) showed that D/h is the most influential parameter with respect to the drag
during the quasi-steady stage. On the other hand, investigations of constant-density
flows past cylinders near walls identify ReD and δ90/D as influential parameters (e.g.
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Figure 39. Instantaneous flow field for the D/h = 0.4 case at t/(h/V ) = 14.16. Instantaneous
streamlines are superimposed on the concentration (c∗) field.

Bearman & Zdravkovich 1978). This suggests that for gravity-current flows, the effect
of D/h on the drag is felt through its influence on δ90/D and ReD . Of more importance,
however, is the effect of D/h on the structure of the flow field around the cylinder
during the quasi-steady state. A comparison of the t/(h/V ) = 11.8 frame of figure 4
with figure 39 indicates that for the larger cylinder the upstream and downstream
levels of the dense fluid are more disparate, which results in increased hydrostatic
drag. Specifically, we found the ratio FD,hyd/FD to be 5 % at D/h = 0.05, 25 % at
D/h= 0.15, 45 % at D/h = 0.4 and 66 % at D/h= 0.5. Hence, the hydrostatic drag
component is pivotal for the overall drag increase with D/h. For a further discussion
of the hydrostatic drag based on hydraulic theory, cf. Baines (1995, p. 44).

It is also instructive to compare the present flow with the investigation by Castro
(2002), who considered weakly stratified flow past a bottom-mounted flat plate
inside a channel, with slip walls at the bottom and top boundaries. The level of
stratification, given by the Richardson number, is sufficiently weak so that no internal
waves are generated. For ReD = 100, Castro (2002) shows that the drag FD/0.5ρ0DV 2

decreases monotonically with increasing stratification, as long as internal waves are
absent. With increasing stratification, the vertical velocity near the separation point –
and thus the vorticity shed into the wake – are reduced, which in turn lowers the
drag. By comparison, diffusion of baroclinically generated vorticity into the wake is
less influential. In the present flow, stratification effects are mainly confined to the
interface between the two fluids, while the density in the vicinity of the separation
point is approximately constant (cf. the t/(h/V ) = 11.8 frame of figure 4). Hence, drag
reduction via the suppression of vertical velocities near the separation point is not
observed.

7. Summary and conclusions
The present study has investigated the unsteady drag and lift forces to which a

submarine, bottom-mounted square cylinder is subjected by an impinging gravity
current. Towards this end, two- and three-dimensional, high-resolution Navier–
Stokes simulations have been conducted that provide detailed information on the
time-dependent pressure distributions along the surface of the cylinder, along with
quantitative insight into the physical mechanisms generating these forces.

Two-dimensional simulations demonstrate that temporal force fluctuations are
primarily caused by separated flow regions periodically approaching the cylinder
from upstream. These flow regions are generated by Kelvin–Helmholtz vortices in the
mixing layer between the gravity current and the ambient fluid. Increasing Reynolds
numbers result in larger and more sustained force fluctuations due to more intense
separated flow regions approaching the cylinder.



100 E. Gonzalez-Juez, E. Meiburg and G. Constantinescu

A comparison of two- and three-dimensional simulation results shows that the
impact of the gravity current on the cylinder is essentially two-dimensional in nature.
Thus, two-dimensional simulations can be used to explore this stage. However, beyond
the impact stage and at high Re two-dimensional simulations noticeably overpredict
the force fluctuations, due to unrealistically coherent Kelvin–Helmholtz vortices.
Figure 12 suggests that unrealistic force fluctuations appear in two-dimensional
simulations for Re values O(10 000) or higher.

The flow processes and their effects on the unsteady force observed in low-Re
(O(1000)) two-dimensional simulations are qualitatively similar to those seen in
high-Re (O(10 000)) three-dimensional simulations. As a key difference, coherent
vortical structures approach the cylinder from upstream during the transient stage in
the former, while intermittent vorticity patches convect towards the cylinder in the
latter. The similarities of the flow processes seen in low- and high-Re simulations,
and the small effect of Re on the temporal evolution of the drag and lift seen in
three-dimensional simulations, suggest that low-Re simulations can provide useful
predictions for higher-Re flows.

At impact the gravity current’s lobe-and-cleft structure sets the spanwise variation
of the drag. Beyond impact, an unsteady cellular flow structure emerges upstream of
the cylinder and produces a peak-to-peak variation of the drag of up to 20 %, with
a characteristic length that scales with the cylinder height. This cellular structure is
similar to that found in constant-density flows past bottom-mounted square cylinders.

The largest force magnitudes occur at impact, so that they can be studied via
two-dimensional simulations. The ratio of cylinder height to current height represents
an important geometrical parameter. Larger cylinders are seen to experience higher
drag, as they are more exposed to the energetic high-speed core of the gravity current.
Small cylinders, which are mostly submerged in the viscous boundary layer for no-
slip bottom walls, see a larger drag in corresponding slip wall simulations, where a
boundary layer does not form. Higher Reynolds numbers result in slightly larger drag
forces, due to the thinner associated boundary layers.

A comparison of a gravity-current flow impinging on a bottom-mounted cylinder
with a corresponding constant-density flow reveals several key differences. The impact
stage, which requires the existence of a front, does not have a counterpart in constant-
density flows. Furthermore, the hydrostatic drag component, absent in constant-
density flows, is found to be important for gravity currents, especially for larger
D/h. Finally, we observe that the downward motion of the dense fluid immediately
downstream of the cylinder strongly influences the wake and thus the drag.

Recently, a preliminary design drag coefficient of 1.25 has been suggested for
bottom-mounted submarine structures encountered perpendicularly by a gravity
current (Bruschi et al. 2006). The uncertainty associated with this value, due to a
lack of drag measurement data, is recognized by the authors. The present simulation
results indicate that the drag coefficient reaches a peak near 3 at impact and later
settles to a value of about 1. This information will be useful in the selection of a
design drag coefficient for submarine structures under the potential impact of gravity
currents. Our study also shows that because of the small torque the force vector can
be assumed to act through the geometric centre of the structure. Furthermore, the
force vector is directed downstream and upward when the current first meets the
structure and downstream and downward during the later stages. This information
will aid in the design of the aforementioned structures.

There are several directions in which the present investigation can be extended.
Besides considering cylinders of different shapes, an interesting question concerns the
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influence of a larger gap between the cylinder and the bottom wall. The presence of
such a gap, which may form due to scouring in marine applications, might result in
periodic vortex shedding from the cylinder, so that the issue of potential resonant
interactions with the periodic separated flow regions approaching from upstream
arises. Furthermore, it will be of interest to analyse the influence of a sloping bottom
boundary (Birman et al. 2007) or of stronger density differences (Birman, Martin &
Meiburg 2005; Lowe, Rottman & Linden 2005) on the current/cylinder interaction.
Finally, the extension to depositing and eroding currents (Blanchette et al. 2005) is
relevant to applications in which scour is a concern. Efforts to unravel these effects
are currently underway.

The authors wish to acknowledge several helpful discussions with Ben Kneller
and the help of Talia Ekin Tokyay with the three-dimensional simulations. E. G.-J.
acknowledges the support of the National Science Foundation IGERT grant DGE02-
21715, as well as a Cota-Robles fellowship. Computing time has been provided by the
California NanoSystems Institute at the University of California at Santa Barbara
and Hewlett-Packard and by the National Centre for High-Performance Computing
in Taiwan.

REFERENCES

Baines, P. G. 1995 Topographic Effects in Stratified Flows . Cambridge University Press.

Bearman, P. W. & Zdravkovich, M. M. 1978 Flow around a circular cylinder near a plane
boundary. J. Fluid Mech. 89, 33–47.

Benjamin, T. B. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31, 209–248.

Birman, V. K., Battandier, B. A., Meiburg, E. & Linden, P. F. 2007 Lock-exchange flows in
sloping channels. J. Fluid Mech. 577, 53–77.

Birman, V. K., Martin, J. E. & Meiburg, E. 2005 The non-Boussinesq lock-exchange problem.
Part 2. High-resolution simulations. J. Fluid Mech. 537, 125–144.

Blanchette, F., Strauss, M., Meiburg, E., Kneller, B. & Glinsky, M. E. 2005 High-resolution
numerical simulations of resuspending gravity currents: conditions for self-sustainment. J.
Geophys. Res. 110, C12022, doi:10.1029/2005JC002927.

Bonnecaze, R. T., Huppert, H. E. & Lister, J. R. 2006 Particle-driven gravity currents. J. Fluid
Mech. 250, 339–369.

Bonnecaze, R. T. & Lister, J. R. 1999 Particle-driven gravity currents down planar slopes. J. Fluid
Mech. 390, 75–91.

Bruschi, R., Bughi, S., Spinazze, M., Torselletti, E. & Vitali, L. 2006 Impact of debris flows
and turbidity currents on seafloor structures. Norw. J. Geol. 86, 317–337.

Cantero, M. I., Lee, J. R., Balachandar, S. & Garcia, M. H. 2007 On the front velocity of gravity
currents. J. Fluid Mech. 586, 1–39.

Castro, I. P. 2002 Weakly stratified laminar flow past normal flat plates. J. Fluid Mech. 454,
21–46.

Chernyshenko, S. I. & Castro, I. P. 1996 High-Reynolds-number weakly stratified flow past an
obstacle. J. Fluid Mech. 317, 155–178.

Chomaz, J. M., Bonneton, P. & Hopfinger, E. J. 1993 The structure of the near wake of a sphere
moving horizontally in a stratified fluid. J. Fluid Mech. 254, 1–21.

Doligalski, T. L., Smith, C. R. & Walker, J. D. A. 1994 Vortex interactions with walls. Annu.
Rev. Fluid Mech. 26 (1), 573–616.

Ermanyuk, E. V. & Gavrilov, N. V. 2005a Interaction of an internal gravity current with an
obstacle on the channel bottom. J. Appl. Mech. Tech. Phys. 46 (4), 489–495.

Ermanyuk, E. V. & Gavrilov, N. V. 2005b Interaction of an internal gravity current with a
submerged circular cylinder. J. Appl. Mech. Tech. Phys. 46 (2), 216–223.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A 3 (7), 1760–1765.



102 E. Gonzalez-Juez, E. Meiburg and G. Constantinescu

Gonzalez-Juez, E. D., Constantinescu, S. G. & Meiburg, E. 2007 A study of the interaction
of a gravity current with a square cylinder using two-dimensional numerical simulations. In
Proceedings of the 26th Intl Conf. on Offshore Mechanics and Arctic Engineering , San Diego,
California.

Greenspan, H. P. & Young, R. E. 1978 Flow over a containment dyke. J. Fluid Mech. 87, 179.
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